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Abstract—A crack in a brittle substrate parallel to the film/substrate interface is considered. Stress
intensity factors are obtained as a function of film, substrate thickness, elastic properties and edge
loads at arbitrary crack depth. These results, combined with the criterion Ky, = 0, are used to predict
the steady-state cracking depth. The critical combination of residual stress and film thickness below
which steady-state substrate cracking is avoided can be inferred provided the substrate toughness
is known,

I. INTRODUCTION

Today's technology demands devices joined by many combinations of structural material
groups {ceramics, metals, polymers). The evaluation and enhancement of the mechanical
reliability of these inhomogencous structures have emerged as high priority subjects to both
the materials science and solid mechanics communitics. Cracking and decohesion processes
in film/substrate systems have been studied extensively in recent years. The cracking path
and pattern vary substantially for different film/substrate systems with differcat relative
fracture resistances of film, substrate and interface, sign of the residual stress, ctc. When
films are exposed to residual compression, there are two main ways in which failures can
occur: films may buckle from substrates and deluminate (Evans and Hutchinson, 1984,
Argon ¢t al., 1989); or substrates may split along the direction perpendicular to the
interfaces (Gruninger ef af., 1987). For films under residual tension, decohesion can initiate
at the edges of the specimen, or at an internal crack in the film, running along the interface
at first, and then either continue to propagate along the interfuce if the interfuce has low
enough toughness or deviate into the substrate if its toughness is sufliciently low. The
interfacial crucking process in film/substrate systems is beginning to be understood. Some
recent efforts in this direction can be found in Argon er of. (1989), Charalambides et al.
(1989). Kim and Jiang (1986) and Suo and Hutchinson (1989a,b). Some remarkable
photographs of cracking in films are presented in Argon et of. (1989), where an amorphous
SiC coating is deposited on a Si single erystal wafer with (100) surfuce and where crucks
run away from the initial flaw through the coating parallel to the two (110) directions.
These directions are the stiffest in the plane of the (100) wafer and thus produce the largest
tensile misfit stress across them in the coating. Most observed failure modes und the present
status of understanding have been reviewed in a recent article by Evans er al. (1988).

In the present paper. attention will be focused on the cracking process in brittle
substrates. Experiments have revealed that cracks in films exposed to residual tension have
a strong tendency to extend into brittle substrates and evolve into a trajectory parallel to
the interface (Cannon ¢t al., 1986; Hu et al., 1988 ; Thouless et al., 1987 ; Drory et ul.,
1988). This is not an uncommon phenomenon. For a system (Fig. 1) consisting of a thin
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Fig. 1. A schematic drawing of cracking trajectory.
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Cr film (under tension) deposited on a glass substrate (Hu er al., 1988), for example, the
crack initiates at the edge of the specimen, extends along the interface for about 1-2 film
thickness and then deviates into the substrate and propagates parallel to the interface at a
depth of 4-3 film thicknesses beneath the interface. The initial stage of the process is rather
complicated to characterize. although attempts to model the initial kinking out of the
interface have been made in He and Hutchinson (1989). However, the striking feature that
the crack does tend to run parallel to the interface at some characteristic depth has been
understood owing to systematic efforts combining experiments and theoretical analyses cited
above. In these investigations, observed crack depths were compared with the theoretical
predictions based on the criterion that a crack seeks a depth where Kj; = 0, and a close
correlation for many material couples over a wide range of film/substrate thickness was
found. The object of this paper is to predict the steady-state cracking depth for various
film/substrate systems under general edge loading (residual stress is equivalent to a par-
ticular combination of edge loads), and provide the information on the critical combination
of film thickness and external loads below which delamination by substrate cracking can
be inhibited.

In the next section. both stress intensity factors K| and K|, are computed for a crack
at arbitrary depth parallel to the interface. In Section 3 an equation governing the steady-
state cracking depth under general edge loads is obtained by enforcing K, = 0. In particular,
films subject to residual tension are investigated in detail. The steady-state cracking depth,
and the associated parameter Q = K/o /A, referred to as the decohesion number (Evans et
al., 1988), where ¢ is the residual tensile misfit stress in the film and 4 the Alm thickness,
are presented for various film/substrate thicknesses and elastic moduli. The latter, in con-
junction with the knowledge of the substrate toughness K., provides the critical combination
a/h below which steady-state substrate cracking is avoided. In the final section, two
competing crack paths in film/substrate systems are considered. A criterion is proposcd to
predict the tendency of a film/substrate system exposed to misfit tensile stress in the film to
undergo interface cracking in preference to substrate cracking or vice versa.

2. STRESS INTENSITY FACTORS

The basic plane clasticity problem which is analyzed is depicted in Fig. 2a. The system
consists of a thin film of material No. | deposited on a substrate of material No. 2. Each
material is taken to be isotropic and linearly elastic. A crack parallel to the interfuce is pre-
existing in the substrate. The problem is asymptotic in that the two material layers are
infinitely long and the crack is semi-infinite. The structure far ahead and behind the crack
tip is considered as three {composite) beams, with longitudinal load P, and moment M, per
unit thickness acting at the neutral axis of each of them. No residual stress is present at this
stage of development. However, it will be shown in the next section that the residual stress
is equivalent to a particular combination of edge loads. Various length quantities specified
in Fig. 2a are normalized by the film thickness, A, with 4 as relative cracking depth and 4,
as substrate/film thickness ratio. The two parameters, A and A, measuring the levels of the
neutral axes, depend on 2 and 4, and clastic properties, and expressions for them are given
in Appendix A. The task below is to relute the stress intensity factors, K, and K. to the
external loads, Ps and Ms, as well as to h, 4, 4, and the clastic moduli of the two materials.
It should be emphasized that the solution is quite sensitive to the substrate thickness
{mcasured by i,) even for very thin films, contrary, perhaps, to one's intuition. In the first
collaborated attempt to understand the phenomenon of substrate cracking (Thouless ef al.,
1987). the comparison, which gave rise to appreciable discrepancics, was made between a
theoretical prediction based on the solution for an infinitely thick substrate and the exper-
imental data obtained, of course, for a finite substrate. These discrepancies were removed
later by considering substrates with finite thickness using finite element calculations (Drory
et al.. 1988).

The nondimensional elastic moduli dependence of bimaterial systems, for traction-
prescribed boundary value problems, may be expressed in terms of two Dundurs’ (1969)
parameters
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Fig. 2. Conventions and geometry.
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Subscripts | and 2 refer to the two materials in Fig, 2a, k = 3—4v for plune strain and
(3 = v)/(1 +v) for plance stress, [' = u,/us, v is Poisson’s ratio and p is the shear modulus.
The physically admissible values of & and f§ are restricted to a purallelogram enclosed
by a= +1 and x—4ff = +1 in the =, f-plane. The two parameters measure the elastic
dissimilurity of two materials in the sense that both vanish when the dissimilarity does. Two
other bimaterial parameters, X, the stiffness ratio, and e, the oscillatory index, are related
to « and f, respectively, by

¢, l+ax I -
= s o= —- £=—Iln ——

T+

where ¢ = (k4 1)/p. Thus « can be readily interpreted as a measure of the dissimilarity in
stiffness of the two materials. Material No. 1 is stiffer than No. 2 as « > 0 and material No.
1 is relatively compliant as a < 0. The parameter g, thus f3, as has been discussed extensively
in the literature on interfacial fracture mechanics, is responsible for the oscillatory behavior
at an interfacial crack tip. However, it will be apparent later that for the problem considered
now, with the crack tip in a homogencous material, the solution depends weakly on 8.
Hence for many practical applications, taking # = 0 can be a very good approximation.
Overall equilibrium requires that the six loads in Fig. 2a satisly

P| ""Pz_PJ = 0
Myt My—M =P h(A+70/2=A[2)+ P3h(Ag —~ 4o/2+4(2) = 0. (&)

Therefore only four among the six are independent, say, P,, P;, M, and M. Superposing
the solution for the composite beam in Fig. 2b onto that for the structure in Fig. 2a, one
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finds that the number of load parameters controlling the crack tip singularity can be reduced
to two. i.e. P and M in Fig. 2c, given by

M,

P=P|—‘C|P3—C: h N

M=M,-C:M, 4

where the nondimensional numbers. Cs. are given in Appendix A. It is the reduced problem
in Fig. 2¢ that will be analyzed below. Once the solution is obtained. the solution to the
general problem in Fig. 2a can be readily constructed by reinterpreting P and M via (4).

In the following the functional form of the stress intensity factors, K; and K|;. of the
system in Fig. 2c is sought. It is worthwhile to bear in mind that the solution in general
should depend on P, M. h. ¢, (or ¢;) and dimensionless parameters 4. 4. x and S.

The energy release rate can be calculated exactly by using the strain energy stored in
the structure per unit width per unit length far behind the crack tip. The result is a positive
definite quadratic in P and M which can be written as

G cz[lﬂ+1u:+7 PM } )
== —+ —5+2————sin 7y
it/ 7
16| Uh Vi \/U'Vh..
where {7 and Fare dimensionless positive numbers and the angle 1 is restricted to the range
i71 < =2 for definiteness. Expressions for these quantities can be found in Appendix A,
Notice that all the nondimensional quantitics appearing in (4) and (5) depend only on 4,
4 and I (thus %), but not on fi. This clearly indicates that the energy release rate for the
general problem in Fig, 2ais f-independent.
The stress intensity factors, K, and Ky, depend lincarly on P and M, which, in con-
junction with dimensional analysis, dictates the functional form

K +iky, = (6)

[ [ r M ]
a +bh :
J2L Jun  Jvn
where @ =/ — 1 and « and b are nondimensional complex numbers depending on a, f8, 4

and 4,. Furthermore, since the energy release rate is related to the stress intensity factors
by

CH 5 =
G = 8‘(1\’.‘+1\(,). )

comparison of eqns (3) and (6) reveals that the numbers must satisfy
lal =1, |bl =1, ab+ub=2sin . (8)

Equation (8) provides three constraints among two complex numbers. Hence only one real
quantity is undetermined, which is introduced as w, such that

a= euu. h e __icu:u w,-)' (9)

The angle @ only depends on a, ff, 4 and 4, and will be calculated and discussed shortly.
Now it is possible to rewrite (6) morc explicitly as

{ P M
l\'l +iKn = = [’* =g ‘*1:;;' e (10)
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Table 1. w(a, B. 4, = 20, 1) (in degrees)

-3 -6 -4 -2 0.0 0.2 04 0.6 0
-4 00 -4 00 -3 01 -3 Of -2 02 -2 02 -1 03 -1 03 00 04

457 443 464 434 476 415 457 43 5% 531 56 64 580 613 619 660 685 753

524 356 520 3547 511 S50 510 542 505 549 510 MY S5l4 569 535 603 58.0‘
S44 531 552 532 47 525 546 519 538 508 532 501 522 492 815 494 533 500
535 529 542 531 540 527 $39 522 530 512 524 503 512 489 505 473 49.7 468
§3.1 527 536 529 535 526 534 523 527 514 521 505 508 491 496 476 418 455
526 524 528 525 529 525 528 513 S24 517 517 09 506 497 491 479 464 449
$2.3 524 528 524 526 524 525 522 512 SLE ST 512 506 3500 497 484 462 41
523 S11 524 523 528 S1) 524 523 527 520 S1% 518 S09 X3 494 439 464 456
522 522 23 523 524 523 523 5271 521 520 518 516 510 508 496 493 467 461
521 521 S S2.1 Su1 521 521 St 520 520 518 517 Si4 513 504 502 479 477

[T
£
L -

AR RN -0 Ry
“n

[~}

P M
K = cos m+-——~—— sin (w+7y
V2Uh 2Vvh?
P
Ky = e sm W — ~———cos (w+7) ()

so that the stress intensity factors are fully determined apart from the single dimensionless
real function w(a, B, Ay 4). From (11) one can restrict w to the range 0 < w < n/2 to recover
the positive signs of K; and K, as anticipated for the special case P> 0 but M = 0. It is
significant to note that of the two parameters, « and f3, characterizing the elastic dissimilarity
of two materials, « is by far the more important one, since f# enters the formulation only
through w, and it will be clcar soon that w depends weakly on f. Morcover, detailed
calculations below show that w is almost invariant over wide ranges of the parameters o, f3,
Ay and A. A proposal of taking @ = 52° will be made for the situations where only crude
estimates are desired.

Specific determination of the function w(a, fi, 44, 4) requires that the crack problem be
rigorously solved for one loading case for a given structure, i.c. prescribed values of a, 8, 4
and 4,. This has been done in Appendix B by solving the integral equation based on
continuously distributed edge dislocations, The function w(z, §, 44, 4) is listed tn Tables |
and 2 at 4, = o0, 10, respectively, for various « and some extreme values of f, at several
selected cracking depths 4. The dependence of @ on the four variables is relatively weak. It
is believed that w is analytic in 1/, for large A,, and therefore w can be well approximated
by linear interpolation in 1/4, between 1/, = 0 and 0.1, where values of w have been
tabulated. Since f enters the stress intensity factors formulae (11) only through w, and from
Tables | and 2 one knows that w is a very weak function of f3, it is apparent that taking
f# = 0 can be a very good approximation for many applications. For this purpose we have
listed more extensively the values of w at 1/4, = 0, 0.05, 0.1, for various « and 1 in Tables
3. 4and S, all with g = 0.

Contact cuan be made with some earlier works. For a thin film bonded on a semi-infinite
substrate, that is 14 = o0, eqn (11) is reduced to

Table 2. w(a, B, 4, = 10, 4) (in degrees)

-8 -6 -4 -2 0.0 0.2 0.4 0.6 0.8
-4 00 -4 00 -3 01 -3 O1 -2 02 -2 02 -1 03 -1 03 00 04

548 523 554 520 545 510 547 09 539 504 545 309 545 54 564 535 394 518
540 528 548 529 544 522 543 518 533 507 S53.0 502 520 492 523 493 Sl 508
S3.1 525 3538 5207 3536 3523 534 519 526 509 520 50.1 308 488 503 480 499 476
525 522 519 523 528 520 527 517 520 509 SL4 501 302 483 492 476 481 464
515 St4 S5L7 514 S16 513 513 SIO SLO 504 504 497 493 486 482 413 466 456
504 503 504 504 304 302 502 500 498 495 493 490 435 481 474 459 458 452
49.0 490 491 490 490 489 489 487 486 484 481 480 4TS 472 466 463 451 443

w

w
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Table 3. w(z, § =0, i, = o, 4) (in degrees)

-8 -6 -4 -2 0.0 0.2 04 0.6 08

0.05 ] 398 424 453 439 520 S55 39.2 636 700
0.1 443 452 472 495 520 551 584 627 685
0.2 437 483 493 504 520 542 570 606 663
0.3 508 502 506 SL1 52.0 S36 557 587 640
0.4 518 516 S14  S1S 520 531 546 571 619
0.5 $24 523 520 518 520 527 537 558 60.1
0.6 527 S27 523 520 520 524 530 546 583
0.7 53.1 529 526 522 520 s21 525 536 568
0.8 53.t 53t 528 523 520 519 520 528 555
0.9 532 532 529 524 520 518 517 521 543
H 53.1 532 529 s25 520 51,7 s14 518 533
1.2 530 532 530 525 520 515 S09 506 SLS
1.4 529 531 530 526 520 514 S06 500 502
1.6 528 531 529 526 520 513 505 495 492
1.8 $28 530 S28 526 520 513 503 492 484
$2.7 529 528 525 520 513 503 490 4738
$2.4 525 526 524 520 514 503 48,7 464
523 524 524 523 520 514 504 489 462
52.2 523 523 522 520 518 507 49.2 463
52.1 522 522 522 520 516 509 496 466
s2.1 $2.2 522 522 520 SL.7 SL.l 498 470
352.1 521 522 s2.1 520 517 511 50.1 473
52.1 s2.1 s2.1 5241 520 518  s12 503 476
0 52.1 s52.1 52.1 521 520 518 sS13 503 479

—_ O G N A e W N

K, = cos W+ Wn,:: sin w

\/wm S

Ky = —::;: sin @ - = COS . (12)
J2hA 20

The nondimensional effective cross-section, 4, and moment of inertia, /, of the composite
beam consisting of the film and spalled portion of the substrate can be found in Appendix
A. This special case was derived in Drory er af. (1988) with different notations, and these
authors were able to find an approximate value of w in the following way. For the film and
substrate with identical material, i.e. 2 = f§ = 0, w is obviously independent of 4. The w for
this case can be extracted from the solution presented in Thouless er al. (1987), which is

Table 4. ax{x. § = 0, 4, = 20, 1} (in degrees)

-8 -6 -4 -2 0.0 0.2 0.4 0.6 03

53.0 st 529 526 522 518 S15 517 336
525 527 527 524 519 512 502  49.0 48.1
§23 524 524 522 518 512 502 487 469
519 52.0 520 519 516 SL.0 501 487 46.6
516 517 517 516 513 508 501 48,8 46.6
513 513 513 512 510 506 499 48,7 466
50.8 30.8 508 507 505 502 496 485 465
50.3 503 503 502 500 497 492 48.2 464
49.7 497  49.7 496 494 492 486 479 462

A I R R B -4
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Table 5. wixz. B =0, i, = 10, 4} (in degrees)

-3 -6 -4 -2 0.0 0.2 0.4 06 03

.05 399 424 456 439 522 555 591 633 100
0.1 443 450 470 495 522 551 585 624 679
0.2 4838 484 49.1 504 S2.1 543 569 604 656
0.3 s0.8 502 504 510 521 535 556 58S 633
0.4 s1.8 513 512 514 520 529 544 568 612
0.5 $23 520 517 517 519 525 S35 554 594
0.6 526 524 521 519 519 521 528 543 3578
0.7 5283 526 523 520 519 519 523 534 564
0.8 528 3528 525 522 519 517 518 526 ssa
0.9 529 529 526 523 S19 516 518 519 s4
1 529 529 s27 3523 st9 514 512 S14 3531
1.2 528 s29 527 523 518 512 0.7 505 516
1.4 526 528 526 522 S1.7 512 504 499 3504
1.6 525 3526 3525 521 516 509 501 494 494
1.8 $23 525 524 3520 513 508 499 490 487
2 $22 523 522 3519 St4 507 498 488 481
S14 514 514 511 507 500 491 479 466
504 504 S03 50.0 49.7 492 484 473 458
490 491 489 488 485 480 474 465 45.)
475 4785 474 472 468 464 459 454 442

[- SR I

w = 52.14" (i = 52.0" from the present analysis). This o value was taken, with some further
Justification, for film and substrate of different materials, i.e. withw = 52,147, (12) becomes

K, = 0.434 —— +0.558 — -
' \/Ah \/1/:

P !
Ku = 0.558 e e (3,434 ’"A: B (13)

Ah J

Comparison of & = 52.14” with those w values listed in Table 1 for «, f # 0 suggests that
eqn (13) is a good approximation provided that the film is not too stiff and the crack depth
is not too small. We propose that the approximation @ = 52° can even be taken for finite
substrates in eqgn (1 1) according to the values listed in Tables 1-5. As a matter of fuct, most
of our applications below were first done with this simplification and then the crude results
were refined using the more accurate values of w in those tables.

3. STEADY-STATE CRACKING DEPTH AND DECOHESION NUMBER

As mentioned before, the steady-state cracking position is determined by enforcing
Ky = 0 at the crack tip. From (11) this leads to

cos (w+7y) vV Ph

sinw VUM’ (14
For a given film/substrate system, i.e. prescribed x, f and 4,, under a given combination of
load. Ph/M, the solution of 4 to eqn (14) gives the steady-state cracking depth. This depth
is then substituted into (11) to calculate K|. Finally by letting K| equal to K,.. the toughness
of the substrate, one can determine the critical combination of loads.

SAS 7%:118
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Film under tension

Substrate
a) c)

b) d)

Fig. 3. Equivalent edge load for misfit stress. (a) There is a misfit strain across the film/substrate
interface. (b) Cut along the interface. (c) Stretch and paste: no misfit strain is present across the
film. (d) The equivalent edge load.

The general nature of the edge load combination of the structure in Fig. 2a provides
the flexibility to simulate various practical problems. As an example, cracking driven by
residual tensile stress in the film (Fig. 3a) is to be considered in detail. Here o is the misfit
stress in the film relative to the substrate, i.e. o equals the film stiffness, 8/c . times the misfit
strain, The “cut and paste™ technique indicates that the crack tip stress field induced by the
misfit stress o is exactly the same as that by the edge loads shown in Fig. 3d. The stress
intensity factors can be computed using the solution to the problem in Fig. 2a if the
following identification is made:

P,=P,=ch, M,=ach*(i+i=A), M,=0ch*({+i,—A4). (15)
The reduced loads in Fig. 2c are obtained from (4), i.c.
P =gahfl -C, _Cz(é‘*'}»n—Au)]s M= 0’12[(§+}.—A)—C';(E-{»—L,—A(,)]. (16)

The encrgy release rate can be computed from the general formula (5). One may obtain a
symmetric form for this special case directly from Fig. 2a by taking the difference between
strain energy stored in the composite beams per unit width per unit length far behind and
far ahcad of the crack tip, i.c.

G =g [ b Goa+l)” 1 (e _—A"ﬂ/.?li}

16 o (7

1 4 1 A, I

The steady-stite cracking depth, 4, is solved from (14) for various « and 4, (f is taken
to be zero). The results are plotted in Figs 4 and 5. It is remarkable that the solution is so

10

0 02 04 06 .08 .
2N

Fig. 4. Steady-state cracking depth as a function of film/substrate thickness ratio.



Cracking in brittle substrates 1345

1/2,=0

0.01

0.05
0.1

Fig. 5. Steady-state cracking depth as a function of Dundurs’ parameter.

Q=K/oh'"?
20 /
1.5
1.0
(.5
1A, =0
0.1
()0 i i i .
-0.8 0.4 0.0 0.4 0.8
a

Fig. 6. Decohesion number vs Dundurs’ parameter.

sensitive to the substrate/film thickness ratio, 4q, even for very large 4., as well as to the
Dundurs’ parameter %, which is a measure of stiffness ratio of two matcrials. This critical
value of 4 is then used to calculate K from (11). The decohesion number, Q = Ky/a,/h. is
plotted against a for 1/4, =0 and 0.1 in Fig. 6, providing the critical combination ¢,/h
below which steady-state substrate cricking is inhibited if the substrate toughness, K., is
known. The decohesion number is somewhat indifferent to the film/substrate thickness ratio
in the range 10 < 4, < oo. This clearly indicates that the eritical combination ¢,/ A is almost
@ constant for the substrates with the same material but different thickness. as long as the
substrates are thick enough. However, the decohesion number is strongly dependent on
titm/substrate stiffness ratio. The decohesion numbers for some cases are listed in Table 6.
A fitting curve for Q vs X relation for a thick substrate (4, = o) is given below

Table 6. Decohesion number Q = -!L' vs xand 4,
o /h

N -8 -6 -4 -2 00 02 04 06 08
- | 1.92 128 096 0.75 0.59 046 036 0.27 0.18
10} 1.86 121 089 068 053 040 029 0.19 0.09
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Fig. 7. Energy release rate ratio as a function of Dundurs’ parameter.

Q

K, (3.502-0.6)""°, 1<Z<I10
L<x (18)

- \/,',' 0944 "4 _0.354, 0.

where Z s the film/substrate stiffness ratio defined in (2). In the above calculations, @
values are obtained by lincar interpolations with respect to 1/4, and 4 between those listed
in Tables 3 5.

4. ON THE COMPETING CRACKING PATEIS

Here we address the tendency of a film/substrate system loaded by a tensile misfit stress
in the film to undergo interfuce cracking in preference to substrate cracking or vice versa.
The transient crack path is not analysed. The entire picture will be quite complicated if the
transient process is considered, since as illustrated in Fig. |, cracks often initiate along an
interface and then kink out of the interface if the toughness of the substrate is sufliciently
low. Here we simply compare the energy release rate available for steady-state substrate
cracking with that available for interface cracking. Then, knowing the eritical energy release
rate for the interface and for the substrate, one can infer which path of cracking is the more
likely.

As in Section 3, denote the energy release rate for steady-state substrate cracking (at
the depth where Ky = 0) by G. Denote the energy release rate for a semi-infinite crack along
the interface by G,. The interface crack is mixed mode and a detailed calculation in Suo
and Hutchinson (1989a) indicated that the phase angle of the stress intensity factors is
around n/4 for a wide range of film/substrate systems for the tensile mistit stress loading.
The energy release rate for the interface crack G, is given by (17) with 2 =0 (since G
continuously approuaches G, as 4 — 0"). The ratio G/G, is plotted in Fig. 7 as a function of
2 for various film/substrate thickness ratios. This ratio is relatively insensitive to the
propertics of the film/substrate system, varying between 0.55 and 0.83 for most systems.

Let G, be the substrate toughness and let G be the interface toughness (which, in
general, can be expected to be a function of the phase angle of the interface stress intensity
factors). If

(19)

!

a ]rQ
QiaQ

the system is more likely to fracture by interface cracking than substrate cracking.
Conversely, if
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G G
bl 20
G.c<G,’ (20)

substrate cracking will be favored.

5. CONCLUDING REMARKS

The present investigation has provided a relatively complete solution to the problem
of a semi-infinite crack parallel to the interface of two bonded infinite elastic layers under
general edge loads (Fig. 2a). The energy release rate can be calculated exactly from (5).
Exact functional forms of stress intensity factors, eqn (11). are found with only one
undetermined dimensionless function w(z. B. 4y, 4), which is then extracted from the numeri-
cal solution presented in Appendix B. An approximation w = 32’ is proposed for those
situations in which only relatively crude estimations are desired. The general nature of the
problem specified in Fig. 2a makes it convenient to model many problems which might be
of interest to scientists and engineers in the field of composite material fabrication. electronic
device design. coating protection. etc. One particular problem has been worked out in
detail, where substrate cracking depth, and the decohesion number K/a,/A for the films
under residual tension are predicted for various film/substrate systems.
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APPENDIX A: ON COMPOSITE BEAMS AND ENERGY RELEASE RATE

The superposition scheme depicted in Figs 2a-< is outlined here. Various quantities are specitied in Fig. 2a,
where A and A, measuring the position of neutral axes of the corresponding composite lavers are given by
AT+IEL+E A3 +2Ta,+3

erny U TTEGEE

(A}

where I is the film substrate stiffness ratio defined by (2). The stresses in the upper beam far behind the crack tip
are g;. = 0,. = 0and

P M
—E(;’—;«y;‘—;y} hi—-A) <y < h(i-A+1)

PM, ,
~(I:i+h_"l"). —~hA <y < h{i—A)

a1y = (A2)

where v is measured from the neutral axis, and A and £ the dimensionless effective cross-section and moment of
inertia of the beam per unit width, are given by

A=i+E, [=1ZBA- =HA= )+ ]+ 304D =4+ A°}/3. (A3)

Similarly. the stresses in the layers far ahead of the crack tip are 7y, = 0. = 0 and

P M . .
- X(fl.;;‘ + }"T,:‘} ,Vu)~ i, —4,) < yp <Miy—4d,+ 1)

6“(}'“) = {A‘”
P, A, .
- h:]; + ’l‘l‘, Yo ) ~ My < vy < hii, —4By)
where v, is measured from the aeuteal axis at the bean far ahead of the erack tip and
Ay = }~u +2X. 1«! = :XI-K{AII e ’:c:): - -%(An - ’:u) + ” + 3An';m(*‘\n - }vu} + }-:l:’f,»;— (A%}
Superposing the structures in Figs 20 and b gives the equivalent loads Pand M in Pig. 2¢:
, LM, .
PP -C P -C, P M =M -CM, (AG)
where
. A R B . . !
Cy= ", Cy= A=A =4 -A), Cy =~ . (A7)
Ay i, f‘,

The energy release rate for the system in Fig. 2¢ can be caleuluted exactly by taking the strain energy stored
in the structure per unit width per unit length far behind the crack tip. The result is & positive definite quadratic
in P and M which cun be written as (3), where

LS SO > o et 2
vTati ot TG Sy
Cor12

VTS
sin g _ LA+ G -42

e « . 8
\/UV (ig—ay’ (A8)

APPENDIX B: INTEGRAL EQUATION FORMULATION AND SOLUTION PROCEDURE

A dislocation formulation of the integral equation for the plane clasticity problem of Fig. 2¢ is used. A
general formulation of the integral equations for multilayer problems was presented in Erdogan and Gupta (1971).
An edge dislocation solution used as the kernel functions is constructed in Appendix C.

The semi-tafinite crack is simulated by an array of continuously distributed edge dislocations along the
negative xp-axis, with v, component A3 at v, = &, which is to be determined as the solution of the integral
equittion. The traction-free condition along the crack face results in the integral cquation

Ml Y It
} [_—' +F,(x-‘f)]ﬁ(é)d:+j Fx=QB(5) ds =0, forx<0 (BD

x—-¢

-

where the first integral ts the Cauchy principal value integral, and
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l
B = paes [6:1()+ib2(D)). (B2)

The complex-valued kernel functions F,(J) are given in Appendix C; they are well-behaved in the whole range
- < { < + oo, with asymptotes
. I
Fi(9) = 0(:3)
5
1

- as { — .. (B3)
F:()=—3 +0(.—,)
9 (8

We observe that (B1) alone is not sufficient to determine B(&) unless the asymptotic behaviors at both the crack
tip and infinity are specified.
The relative crack face displacements are related to the dislocation distribution by
9

)
Si(x)+i6:(0) = J [ +ib2(O)] d§ = Ni(‘zj B(§) d. forx <0. (B4)

Recall the well-known asymptotic expression at the crack tip

=&
8,4+, =c,K f——g as E— 0~ (B3)
2n

where K = K, +iK|, is the complex stress intensity factor. From (84) and (BS) one can show
R =@Q2n)" lim pE,/=¢. (B6)
)

The behavior of B(E) as § = ~— oo can be specified by the displacement fields far behind the crack tip. The results
are given below

s = -1 e 8 ) 8 A

MUBET= = g Y it T A T - T

P (siny m)E asd— - (B7)
S \/UV + vin + real constant
where m = M/(Ph). The *“real constant™ is not known « priori, but must be determined as part of the solution to
the integral equation. Since it is the quantity w(z, i, 4, 4) in (10) that is to be extracted from the solution to the

integral equation, only one loading combination needs to be solved. In our formulation, P is set to be unity and
mt is chosen such that Re {B(§)] remains finite as § = — oo ; that is,

- V 1
m=— [Gsiny (B8)

Re (B3] = ~

Muke the change of variables

x =‘-‘:—l. -l<u<l
u+ 1l
£ ==t 1 1
=57 <t < (BY)
and let
({=x-¢= _E(-u‘_—_l)_“ B10O
¢= Twrarn” (B10)
Then with A(¢) = B(S), the integral equation (B1) can be reduced to
VA VEQ AN+ +e 4
AD 4+ 1AW+ TF’(‘”'T“) dt=0, for -l <u<l (311
_qu—t -1 (t+0°

where the first integral is the Cauchy principal value integral. With asymptotic behaviors (B6) and (B7) in mind,
one can take the approximation for A(t) as
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{— ~ 42 hd
Aln = (T') [B(—aoH—(H—l) S aT,. .m] (BI2)

km}

where Im [B(— x)] is specified in (B7) while Re [B(— 20)} is an unknown finite number, T,(¢) is the Chebyshev
polynomial of the first kind of degree / and the as are complex coefficients which must be determined in the
solution process.

When substituted into (B11), the representation for 4(r) leads to an equation of the form

A
Y lad (u ky + @ o u. k)] + Re {B(~) 1 {w) = L (B13)
kwi
where the terms /, for j = 1.4 involve integrals such as
! t—e)""?
[i(u.k)=J‘ Fl(:)TA-I“)“""’)_I(T) de. (Bld)
—1

These integrals must be evaluated numerically for given values of w and &.

The solution provedure is as follows. Let a set of 2N real unknowns be Re[8(— )] plus the real and
imaginary parts of g, for & = I, N, excluding the real part of ay (i.e. effectively, Re [ay} is set to zero). This set
of 2¥ unknowns is used to satisfy the real and imaginary parts of (BI1) at ¥ Gauss-Legendee points {#,} on the
interval —~1 < u < 1. Once the us have been determined, the complex stress intensity fuctor can be computed,
using (B6) and (B12). from

N
R=(2n)”{8(«-oc)+2 Xa,,}. (B1S)

kwt

The general expression for K in (10) applics to the present case with P = L M = mih, so that

K= SO g {B16)

The aumerical solution yields both the real and the imaginary parts of K. The magnitude of K is known from the
energy rebeise rate and thus provides a consistency check on the accuracy of the solutivn, The results reported in
Tables | S were computed with N between [0 and 15, The consistency check was satisficd to better than 0.1%.,
It is belioved that the accuracy of w is comparable.

APPENDIX C: AN EDGE DISLOCATION IN COMPOSITE LAYERS

The construction of the dislocition solution used as the kernel in the integral equation (B1) is summarized
here. The plane elasticity problem is specified in Fig. Cla. An edge dislocation with components b, and b, is
embedded in medium No. 2 at (0, —d). The entire external boundary is traction-free. The problem is solved by
superposing the following two structures

(i) two bonded halt-plancs with an edge dislocution at (0, —d) (Fig. Cib) and

(it} two bonded layers withont dislocation (Fig. Clc) but with tructions prescribed along its upper and lower

bounditries as the negative of those caleulated along v = hand — I in structure (i)

Problems like {i) with point-wise singulurity embedded in one of two bonded semi-infinite media can be
solved in generad by analytical continuation arguments, With = = x+iy, two analytic functions ®©(2) and Q(2)
used below relute to stress and displacement components by

G +a,, = 20() +B()]

g, +ig, = o) +Q(2)+(E—-2)b'(2)

¢ . p— R X
2u i (u, —iu,) = kB{2) = Q(2) — (F - 2)'(z). {Cl)
I the potentials, B,(2) and Q.(z). for a singularity embedded in an infinite omogenconus plane of material No. 2
are known, the potentials for the problem of two bonded hall-planes with the same singularity in material No, 2
can be constructed by remarkably simple relations (Suo, 1989)
(1 + A, (), zin No. | (1 +THQ,(2), zin No. |
() = o . (=) e , (C2)
Dy(2) + T1Qu(2). zin No. 2 Q)+ AD,(2), :in No.2.
Here A and [T measure the inhomogencity by
2+ ff a-p
=L = L 3
A oy n Y <y

For an edge dislocation at 2 = 5 (s = —id for our case),
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Fig. CL, Construction of the kernel functions.

{ §—5 l
P(2) = I!I:_‘ ":I. Q) = l}[(_\_ \_\,::I+ﬁ[~~\.]. B = ml¢ (b, +ib,). (CH

The stresses along = = J—id in Fig. Clb derived Trom the potentials via (C2) are
. 2
a (. —d)+io (o =d) = Bl T+ H () [+ BH () (C3)
5
where
1611d°; (A+TDHI+(A-TH2id K TR
HWGY = o v Iy =0 - 6
o= gy T CH =2y’ (e

The solution procedure to problem (i) is similar to that developed in Civelek (1985) for a homogencous
strip. Such multilayer problems can be conveniently solved using Fourier transforms with two real potentials,
Ux,y) and (v, v, satistying (Coker and Filon, 1931)

a2

- (4
AU =0, Ax=0, % =lAU (€7
axay
where A = ¢4/ 70+ 0787, The stresses and displacements can be derived from

&MU U U

Ty = om0 B, = o, G, = — 1i-

"oy & vy

v x v 4

N, = = D) L Dy, = = A F DS 8
N s (x+ )(")' puu, o +{(x+ )’,.‘_ (C8)

The general approach to the multifayer problems is as follows. For each layer, the solution of {'(x,y) can be
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separated into two parts: one is symmetric in changing .x to —x. the other is antisymmetric. For the symmetric
part. for example, upon satisfying (C7) the two potentials can be represented by Fourier integrals

bt A A, ) A 4 )
U(x.y) = J. {[—' + —»] e M4 [——’ + —:{' e‘"} cos Ax d4i
o AT A LS A

=1 . )
x(x.¥) =j 33 [d e +A,e"} sin ix da. (C9)
0

The constants 4, are then solved by matching the displacements and tractions along the interface and satisfying
the external boundary conditions. The following integrals may be helpful to obtain the Fourier transforms of the
tractions on the external boundaries

* cos Ax * xsin Ax
A, = ————dx, -,,. A, = —; dX, .
1,(A,a) , Crar X (A.a) J; T a) de. (@a>0) (Cl1O)
One cian easily verify the recursive relations

T 1 éf,

1|=ze . In#l=_§;';E

no_ 1 éaJ,
J|=‘2‘e . J,*|=—ma. (Cll)

Further algebraic details are omitted. The final results are reported below. The stresses along = = { ~id in Fig. Cl
can be represented by

a2l —d) +io 2l —d) = BG (D) + BG(S) (C12)
where
Gi(0) = (2D~ R (D) +ilQu(D + RADI
G0 = [Q:D+ R (D +HIRAD - (D) (C13)

where the Os and Rs are defined by the Fourter integrals
Q) = J:.‘v H=C +AdC] ™+~ Cy+AdC | ¢ ) cos 43 di
Ri(5) = J:'. =Ci+(L+A)Cy] M+ [Co+ (1 —Ad)Coaf ¢ ™) sin A{ dd
0. = J; {[=D,+ddDy] ¢ +[=Dy+idD | ¢ “'} sin i] di
R, = J;b UD =~ (1 +Ad)D,| e =D+ (1 —id)D,) e} cos A5 dA

where the Cs and Ds are solved from the linear algebraic equations

c, D, X, ¥
[P.] ¢, by| _|x: v, Cl4)
P:ile, b, X, Y,
C, D, X, Y,
Here
1-8 # —(2=f) s
P = —eth ke et kM e 0 i+p —2(x=p) —(=—f)
P =e* (=ilpe ™ et (I+in et |l-a —(x=f) -8 t—p -8
2= —~(=-pH 0 1+
P —C“’ ;.H call —c -an /‘.” c-—).ll
U= (i) M et (=il et

X,

5
4

—{— A +ﬂ)(/r+d)+(/\—“)hl"-} e

Xy=— {w -l +l'l)(h+d)+(A—n)h];.} g itnen
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X, = {[- --——+n(H di-2 anA’] e "W L (H—-d)s ¢"”-'"*}
Xo= {[-——n(ﬁw)awnma ] e MM L (1~ (H - d)i] e"”"’"}
d +A+ —th+di
Y = { 3 +[(l+n)(h+d)+(A n)];} “
Yo=+ {A——n [+ M+ +(A— n)]a} g
g +n g Hed P IPNT Y]
Vi = +TI(H+d)i+ 2N HdA* +{1+(H-d)i] e

Y‘ = {[A n - A2 '2] C_("““A‘f-(ﬂ—d)l.. e—lH—d)A}'

The solution to the problem in Fig. Cla is obtained by superposing (C5) and (C12). i.e. for the infinite composite
strip. the stresses at ({, —d) induced by the dislocation at (0. — ) are given by

5
010, —d) +io (. —d) = B[E +F:(C)]+BF.(C) (€19

and F, = H,+G,.



